The Osgood-Taylor-Carathéodory theorem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Aspects of the Colorful Carathéodory Theorem

Let P1, . . . , Pd+1 ⊂ R be d-dimensional point sets such that the convex hull of each Pi contains the origin. We call the sets Pi color classes, and we think of the points in Pi as having color i. A colorful choice is a set with at most one point of each color. The colorful Carathéodory theorem guarantees the existence of a colorful choice whose convex hull contains the origin. So far, the com...

متن کامل

An optimal generalization of the Colorful Carathéodory theorem

The Colorful Carathéodory theorem by Bárány (1982) states that given d+1 sets of points in R, the convex hull of each containing the origin, there exists a simplex (called a ‘rainbow simplex’) with at most one point from each point set, which also contains the origin. Equivalently, either there is a hyperplane separating one of these d+ 1 sets of points from the origin, or there exists a rainbo...

متن کامل

A noncommutative version of the Julia-Wolff-Carathéodory theorem

The classical Julia–Wolff–Carathéodory theorem characterizes the behaviour of the derivative of an analytic self-map of a unit disk or of a half-plane of the complex plane at certain boundary points. We prove a version of this result that applies to noncommutative self-maps of noncommutative half-planes in von Neumann algebras at points of the distinguished boundary of the domain. Our result, s...

متن کامل

A further generalization of the colourful Carathéodory theorem

Given d +1 sets, or colours, S1,S2, . . . ,Sd+1 of points in Rd , a colourful set is a set S ⊂⋃i Si such that |S ∩Si | ≤ 1 for i = 1, . . . ,d +1. The convex hull of a colourful set S is called a colourful simplex. Bárány’s colourful Carathéodory theorem asserts that if the origin 0 is contained in the convex hull of Si for i = 1, . . . ,d + 1, then there exists a colourful simplex containing 0...

متن کامل

Polynomial Extensions of the Milliken-taylor Theorem

Milliken-Taylor systems are some of the most general infinitary configurations that are known to be partition regular. These are sets of the form MT (〈ai〉i=1, 〈xn〉n=1) = { ∑m i=1 ai ∑ t∈Fi xt : F1, F2, . . . , Fm are increasing finite nonempty subsets of N}, where a1, a2, . . . , am ∈ Z with am > 0 and 〈xn〉n=1 is a sequence in N. That is, if p(y1, y2, . . . , ym) = ∑m i=1 aiyi is a given linear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1968

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1968-0220914-7